
 An isomorphism based algorithm to solve complex problems

ALBERTO ARTETA

Computer Science Department

Troy University

 University Avenue, Troy Alabama 36079

UNITED STATES

aarteta@troy.edu

LUIS F MINGO, JUAN CASTELLANOS
 Information and Systems Department

 Polytechnic University of Madrid

 Crtra Valencia km 7 28031 Madrid,
 SPAIN

 lfmingo@eui.upm.es,jcastellanos@fi.upm.es

Abstract: - During years proper memory utilization has been the differential factor for algorithms that try to

solve complex problems in optimal time. Computational complexity is currently measured in time and space.

The way that algorithms are built can make a huge difference when obtaining desired solutions to problems.

Memory engineering based algorithms reveal themselves as essential when fast results are needed and offer

unlimited options to improve whatever bioinspired algorithm that based its performance in terms of time and

space. This work focuses on creating a mathematical generic strategy by building structures through the use of

an isomorphism that optimize the memory utilization and the resolution time of bioinspired models when
dealing with high computational problems. Therefore offers a great help when solving complex and known

issues.

Key-words— Bioinspired models, General Optimization , Complex problems resolution

1 Introduction

The concept of transition p-system was first

introduced in a 1998 by Gheorghe Paun, whose last

name is the origin of the letter P in 'P Systems'.

Variations on the P system model created what we

call 'membrane computing.'

This model was inspired by biology, however P

systems were used as a computational model,

instead of a biological model. Nowadays there are
some attempts of creating new biological models

through the use of p-systems. In [1] there are some

keywords related to membrane computing such as

parallelism, distributed applications, algorithms.

Paun avoids stating that there are implementations

of p-systems. This happens because the model he

proposes has an inherent parallelism and non

determinism. Those characteristics cannot be

implemented in a conventional computer. [1].

Regarding simulators, [2] remarks: simulations on
conventional computers can be useful too: In fact all

these programs were used on biological applications

and they can also play an important role for didactic

purposes and to establish new researching areas.

The living cells we see that they process food and

nutrients in a very characteristic way. Living cells

get atoms or molecules and then react by producing

other atoms and molecules.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Alberto Arteta, Luis F. Mingo, Juan Castellanos

E-ISSN: 2224-3402 27 Volume 15, 2018

This process has been studied and it has also been

tried to implement into computers. Living cells act

and process nutrients according to certain rules that
take place in a parallel and in a non deterministic

manner. This model has been copied by many

researchers to establish new machines that process

information in the same way. In 1998 George Paun

studied the described biological model and then was

able to create what we call nowadays ‘Membrane
computing’. This was created mainly inspired on

the processes that take place inside of the living

cells. After analyzing such processes, it is noticeable
that they have properties that can be used into a

computational model. This model was a revolution

because it opened new researching areas for solving
NP-complete problems.

Foundations and organizations were aware of this

new revolutionary way of computing and

encouraged the research on that direction. Examples

of these are EMCC (European Molecular

Computing Consortium) and The Consortium for

Biomolecular Computing.

In 2004 the official p-system web

http://psystems.disco.unimib.it was created; since
then, it has been supported by the EMCC

In February 2003 membrane computing was defined

as “the most revolutionary way of computing within

ICT”. This was said by the Institute of Scientific

Information.

The transition P-systems have been suffered a

transformation themselves. This transformation

comes from the desire of collecting more biological

properties. Moreover the use of automats has been
added to improve the performance of p-systems.

One of the main goals for the p-systems to achieve

is the resolution of Np completes problems in
polynomial time.

Natural computing group in Madrid is currently

working on implementing p-systems in specialized

hardware. The parallelism degree achieved is high

and the temporary results obtained are promising.

Also, the idea of reducing to practice the p-systems

is more realistic.

Algorithms for applying evolution rules are getting

improved too. A new algorithm that obtains optimal
results when simulating the rules application phase,

is about to be published. This algorithm use
combinatorial laws and statistics.

Np complete problems have been solved in

polynomial time and sometimes even in linear. We
are working closer with biological areas and now

there is a membrane computing application in

biology. It is believed that membrane computing can

be a reliable framework to model living cells

processing.

Moreover, this group has avoided approaching p-
systems as an isolated technology. has worked on

scenarios in where the p-systems can work together

with multiagent systems. There is another paper to
be published in where p-systems works with

autonomous robots to find optimal solutions to

known problems

2 Definitions

Patterns
()ΝΡ⊆→⊗ AANN

},|{],[NjijkiNkji ∈≤≤∈=

Set of patterns

()ΝΡ⊆S is a Set of patterns is defined

as the set:
[]{ }Ν∈≤≤Ν∈∃ jimjnimn ,,b,a,,b,a jiji

Set of set of patterns
{ }ninpatternsofsetaisSiSSS ii ≤Ν∈∃Ν∈= |

.

Observation

Given a region R and alphabet of objects U, and R

(U, T) set of evolution rules over U and targets in T
re`presented as follows:

m

u

n

uu

m

u

n

uu

u

n

uu

Caaar

Caaar

Caaar

mnmm

n

n

→

→

→

→

..:

.......

..:

..:

21

22221

11211

21

2212

1211

There is always a set of set of patterns T)R(U,SS

associated to it. This set of set of patterns contains

all the possible extinguished multisets and it is

obtained by expanding the formula included in the
definition of extinguished multiset:

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Alberto Arteta, Luis F. Mingo, Juan Castellanos

E-ISSN: 2224-3402 28 Volume 15, 2018

∩ ∪
m

l

n

i

li

m

j

jiji uuku
1 1 1

)(-
= = =

≤⋅∑

[] [] []

[] [] []

[] [] []

[] [] []

[] [] []

[] [] []

[] [] []

[] [] []

[] [] []

,],0]...[,0[],,0[,..,],0]...[,0[],,0[,],0]...[,0[],,0[

...

,],0]...[,0[],,0[,..,],0]...[,0[],,0[,],0]...[,0[],,0[

...

,],0]...[,0[],,0[,..,],0]...[,0[],,0[,],0]...[,0[],,0[

...

,],0]...[,0[],,0[,..,],0]...[,0[],,0[,],0]...[,0[],,0[

...

,],0]...[,0[],,0[,..,],0]...[,0[],,0[,],0]...[,0[],,0[

...

,],0]...[,0[],,0[,..,],0]...[,0[],,0[,],0]...[,0[],,0[

...

,],0]...[,0[],,0[,..,],0]...[,0[],,0[,],0]...[,0[],,0[

...

,],0]...[,0[],,0[,..,],0]...[,0[],,0[,],0]...[,0[],,0[

...

,],0]...[,0[],,0[,..,],0]...[,0[],,0[,],0]...[,0[],,0[

21221121

22122211221

21121211121

22122211221

22212222112221

12212122111221

21122111211

22112221112211

12112121111211

mnnmnmnnmm

mnmnnnm

mnmnnnm

mnnnmnm

mnnn

mnnn

mnnnmnm

mnnn

mnnn

uuuuuuuuu

uuuuuuuuu

uuuuuuuuu

uuuuuuuuu

uuuuuuuuu

uuuuuuuuu

uuuuuuuuu

uuuuuuuuu

uuuuuuuuu

LinLinear Multisets isomorphism 1Φ

Building 1Φ , as a part of the physical evolution rule

isomorphism is created as a function which has an
m-dimensional set of natural numbers as input and

an n-dimensional set of natural numbers as output,

where m is the number of evolution rules and n is

the number of symbols included in a given multiset

of objects.

Definition: Linear Multisets function 1ϕ

 Let U= },..1|{ niai = be a set of objects. Let T beset

of targets. Let naaa ..21=ω be a multiset of objects

and let ix be the multiplicity of ia . Let R (U, T) be

a multiset of evolution rules with objects in U and

targets in T. Let m be the number of evolution rules

within R (U, T). Let ik be the number of times that

the rule),(TURri∈ is applied. Then 1ϕ is defined as:

),..,,(),..,,(

:

2121

1

nm

nm

xxxkkk

NN

→

→ϕ

()

=

≡

nm
mnnn

m

m

m

x

x

x

k

k

k

uuu

uuu

uuu

kkk
......

...

.........

...

...

,,..,,
2

1

2

1

21

22212

12111

211ϕ

Once the function 1ϕ is created, the isomorphism 1Φ

is defined as follows:

Definition: Linear Multisets isomorphism 1Φ

Let 1ϕ be the multiset linear function related to a

given evolution rules set
nn Ν→ΝΦ :1

=≠∃

=≠¬∃
=Φ

)()(|)}(),({

)()(|)(
)(

1111

111

1
xyxyyxrandom

xyxyx
x

ϕϕϕϕ
ϕϕϕ

 Definition

Physical evolution rules linear Isomorphism is then
defined as follows:

),(2121,21

21

),..,,(),..,,()...,,(

)(:

21

TURnnm

nm

SSxxxxxxkkk −→→

ΝΡ→ΝΦΦ=Φ
ΦΦ

�

 Based on the previous definitions, the following

one is established and created to take full advantage
of the virtual memory.

Definiion: Virtual linear Multisets function

→

ΝΡ→ΝΦ

p

m

pp

m

m

n

mn

vir

kkk

kkk

kkk

xxx

''

2

'

1

''

2

'

1

21

21

1

,..,,

...

,..,,

,..,,

],..,,[

)(:

Given an input
n

nxxxx Ν∈=),..,,(21 , it returns

the set of numbers

xkNkkkk m

m =∈=)(/),..,,(121 ϕ

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Alberto Arteta, Luis F. Mingo, Juan Castellanos

E-ISSN: 2224-3402 29 Volume 15, 2018

Definition: Virtual linear Pattern function

[] []

[] []

→

Ν→ΝΡΦ

p

n

pp

n

n

mnm

mnm

nm

virt

xxx

xxx

xxx

uuuu

uuuu

''

2

'

1

''

2

'

1

21

12112

11111

2

,..,,

...

,..,,

,..,,

,],0],..[,0[,..,,],0],..[,0[

...

,],0],..[,0[,..,,],0],...[,0[

)(:

Given a set of set of patterns as the input it returns a

set of numbers
n

nxxxx Ν∈=),..,,(21 . The

elements of this resulting set are all the

combinations of all the possible

n

n

j xxxx Ν∈=),..,,(21 where

)()(jSPipatternx j

i ∈∈

of a set of patterns contained in the matrix of set of

patterns.Now it is possible to build the physical and

virtual linear structures from the multisets

isomorphism.

3. Isomorphism based structure

The structure is created as follows.

()[] =Φ mkkkL ,..,, 21

() ()[]
(){ } ()[]

≠Φ

=Φ

φ

φ

mm

mm

kkkLactionnokkkrandom

kkkLkkk

,...,,,,...,,

,...,,,...,,

2121

2121

When L (i, j) already has a value, then, a random

election must be done. This election can be either

overwriting the old value with the new one, or to

leave the old value (No action).This linear structure

has to comply with having all possible numbers, up
to a combination of benchmarks, reasonably high.

Each symbol },..1|{ niX i = will have a

benchmark. The combination of all the benchmarks

will define the number of entries that the linear

structure has. Each entry stores the values
},..{ 1 mkk . These values indicate the number of

times that an evolution rule should be applied to an
initial multiset in order to obtain an extinguished

multiset.

The linear structure ΦL must guarantee that it

contains all the entries corresponding to the

combination number of all benchmarks associated to

the symbols },..1|{ niX i = , i.e. it can not have

non functioning entries. That could damage
response timing and it would increase the

computational complexity in terms of time. It's

necessary to prove that this structure has not null
values.

 Let ΦL
 be a linear structure built from the

evolution rules isomorphism and a certain V multiset

of objects and R (U, T) multiset of evolution

rules.⇒

[] ()
() VnandmTURXXbenchmarkni

XXNXXXNXXXL

ii

ii

n

n

m

n

===≤∀

≤∈∀∈Φ

,)(

,..,,,..,,

'

'

2121

L

Proof

 Let

≡

mnn

m

AA

AA

..

....

..

1

111

1ϕ

 be the function
associated to R (U, T)

⇒

mmnn

m

k

k

AA

AA

..

..

....

.. 1

1

111

)(

)(

11

)1(1111

..

.....

..

nmmn

i

n

mm

kAkA

kAkA

++

++

.

A resulting set of n-sums is obtained. Let iA be =

{min ijA
 of the sums (i)} .Moreover, let

)(ijAP
be the Matrix of set of patterns resulting

from R (U, T).

],0[][/,),(),(iTURTUR AiSpatternsofsetSniNi =∃≤∈∀

. Proof is trivial

Thus,

NxxAkAmjNjAAA ijiijiij ∈∀=+⋅≤∈∃⇒=≠∀],0[/0

.

Observation:

This proves that when following this method, any

natural number from
m

m Nkk ∈},..,{ 1 can be
generated. Thus, the structure does not have null

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Alberto Arteta, Luis F. Mingo, Juan Castellanos

E-ISSN: 2224-3402 30 Volume 15, 2018

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Alberto Arteta, Luis F. Mingo, Juan Castellanos

E-ISSN: 2224-3402 31 Volume 15, 2018

values from any entry. As the process is an
isomorphism, any natural number between 0 and a

given benchmark will be uniquely related to a

combination of
m

m Nkk ∈},..,{ 1 where m is

the number of evolution rules included in R (U, T).

Moreover the calculation of extinguished multisets

will be immediate. When
m

m Nkk ∈},..,{ 1 are

found, applying the evolution rule ir
 a number of

ik
 times to the initial multiset, will calculate

them.

Given V= { },..1|{ niX i = be a multiset of symbols

and given R (U, T), a multiset of evolution rules.

Given the set { Nki∈ the number of times that the

evolution rule ir is applied over the initial

multiset} the following evolution rules function is

defined:

)(()(),(21 ijTURvirtvirtvirt APΦΦ=Φ �

 Consistency theorem

The linear structure ΦL must guarantee that it

contains all the entries corresponding to the

combination number of all benchmarks associated to

the symbols },..1|{ niX i = , i.e. it can not have non

functioning entries. That could damage response

timing and it would increase the computational

complexity in terms of time. It's necessary to prove

that this structure has not null values.

 Let ΦL be a linear structure built from the

evolution rules isomorphism and a certain V multiset
of objects and R (U, T) multiset of evolution

rules.⇒

[] ()
() VnandmTURXXbenchmarkni

XXNXXXNXXXL

ii

ii

n

n

m

n

===≤∀

≤∈∀∈Φ

,)(

,..,,,..,,

'

'

2121

L

Proof

 Let

≡

mnn

m

AA

AA

..

....

..

1

111

1ϕ

 be the function

associated to R (U, T)

⇒

mmnn

m

k

k

AA

AA

..

..

....

.. 1

1

111

)(

)(

11

)1(1111

..

.....

..

nmmn

i

n

mm

kAkA

kAkA

++

++

.

A resulting set of n-sums is obtained. Let iA
 be =

{min ijA
 of the sums (i)} .Moreover, let

)(ijAP
be the Matrix of set of patterns resulting

from R (U, T).

],0[][/,),(),(iTURTUR AiSpatternsofsetSniNi =∃≤∈∀

. Proof is trivial

Thus,

NxxAkAmjNjAAA ijiijiij ∈∀=+⋅≤∈∃⇒=≠∀],0[/0

.

Remark:

This proves that when following this method, any

natural number from

m

m Nkk ∈},..,{ 1 can be

generated. Thus, the structure does not have null

values from any entry. As the process is an
isomorphism, any natural number between 0 and a

given benchmark will be uniquely related to a

combination of

m

m Nkk ∈},..,{1 where m is the number

of evolution rules included in R (U, T). Moreover

the calculation of extinguished multisets will be

immediate. When

m

m Nkk ∈},..,{1 are found, applying

the evolution rule ir a number of ik times to the

initial multiset, will calculate them.

corresponding number in square brackets as

shown at the end of this sentence [1].

4 Virtual structure

Given V= { },..1|{ niX i = be a multiset of

symbols and given R (U, T), a multiset of

evolution rules. Given the set { Nki∈ the

number of times that the evolution rule ir is

applied over the initial multiset} the following

evolution rules function is defined:

.
)(()(),(21 ijTURvirtvirtvirt APΦΦ=Φ �

 Once the virtual function has been constructed, the new

virtual linear structure must be built this way:

()[]
() ()[]][)(

)(

2),(21

),(2

MLappendAP

APL

virtvirtijTURvirtvirt

ijTURvirtvirt

ΦΦΦ

=Φ

o

=

When virtLΦ already has a value, then the new values

are included and are appended to the existing ones. This

means that in each entry of the virtual linear structure,

there will be different values

)],..,,[(

...)],..,,[(),..,,(

''

2

'

1

''

2

'

121

p

m

pp

mm

kkkappend

appendkkkappendkkk

 A concatenation of
),..,,(21 mkkk

 values is included in

each cell of the virtual linear structure. This linear

structure has to comply with having all possible numbers

up to a combination of benchmarks reasonably high.

Each symbol },..1|{ niX i = has a benchmark. The

combination of all the benchmarks defines the number of

entries that the linear structure has. Each entry stores then

a concatenation of values }.,..{ 1 mkk . These values

indicate the number of times that an evolution rule should

be applied to an initial multiset in order to obtain an

extinguished multiset. After proving the consistency of

the physical structure proving the consistency of the

virtual one is trivial.

5 Example

This example describes the steps to create both

structures. In the first part isomorphism is defined, it

will then creates the structure and place it in the
RAM.

 In the second part, another function is built and
then allocated within the virtual memory. The

example considers a situation where the number of

symbols is less than the number of evolution rules,
which is the most interesting case for this analysis.

3

1

2

1

13

2

2

2

3

12

1

3

2

4

11

2121

:

:

:

},{),(}.,{

CXXr

CXXr

CXXr

rrTURXXV

→

→

→

==

From this, the set of patterns obtained is as follows:

[] []{ }]0[),..0[,)..0[],0[),(∞∞=TURS

≡

3

2

1

3211
123

134
),,(

k

k

k

kkkϕ

Let's set),(21 XX benchmarks as (10, 12)

Let),,(321 kkk be selected randomly. For example:

),,(321 kkk = (0, 0, 1)

).....12,16()2,2,2();8,11()0,1,2(

);11,15()1,2,2();.9,12()2,2,1();8,11()1,2,1(

);7,10()0,2,1();10,14()0,2,2();11,15()1,2,2(

);9,12()2,1,2();9,12()1,1,2();5,7()1,2,0();4,5()2,1,0(

)8,10()2,0,2();7,9()1,0,2();4,6()0,2,0();2,2()2,0,0(

);6,8()0,0,2();6,8()1,1,1();4,5()1,0,1();5,7()0,1,1(

);3,4()1,1,0();3,4()0,0,1();2,3()0,1,0();1,1()1,0,0(

),(),,(

11

111

111

1111

1111

1111

1111

213211

=Φ=Φ

=Φ=Φ=Φ

=Φ=Φ=Φ

=Φ=Φ=Φ=Φ

=Φ=Φ=Φ=Φ

=Φ=Φ=Φ=Φ

=Φ=Φ=Φ=Φ

=Φ XXkkk

 Once 1Φ is completed, the next step is building

the function 2Φ

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Alberto Arteta, Luis F. Mingo, Juan Castellanos

E-ISSN: 2224-3402 32 Volume 15, 2018

[] []{ }
[] []{ }
[] []{ }
[] []{ }
[] []{ }
[] []{ }...]4..0[,6,4],6..0[)4,6(

]4..0[,5,4],5..0[)4,5(

]3..0[,4,3],4..0[)3,4(

;]2..0[,3,2],3..0[)2,3(

;]2..0[,2,2],2..0[)2,2(

;]1..0[,1,1],1..0[)1,1(

),(),(),(

2

2

2

2

2

2

2121212

=Φ

=Φ

=Φ

=Φ

=Φ

=Φ

−=Φ XXPXXXX

=Φ2

Now there is enough information to build the

physical linear structure ΦL
 in this example. A

way to build the structure could be:

 =

....101)4,5(,100)3,4(

,010)3,3(,010)2,3(,002)2,2(,010)1,2(

,002)0,2(,001)1,1(,001)0,1(,001)1,0(

)(

==

====

====

=

ΦΦ

ΦΦΦΦ

ΦΦΦΦ

Φ

LL

LLLL

LLLL

xL

 Once this structure is created, it

will be allocated in the RAM. At this moment it is
possible to build the virtual linear structure. The

process is similar to the one above. The main

difference will be that in each cell a concatenation
of values will be stored instead of just one value.

The structure is built as follows:

....0,2,02,1,01,0,1)4,5(1,1,00,0,1)3,4(

0,1,0)3,3(0,1,0)2,3(2,0,00,1,0)2,2(0,1,0)1,2(

2,0,0)0,2(1,0,0)1,1(1,0,0)0,1(1,0,0)1,0(

)(

==

====

====

=

ΦΦ

ΦΦΦΦ

ΦΦΦΦ

Φ

virtvirt

virtvirtvirtvirt

virtvirtvirtvirt

virt

LL

LLLL

LLLL

xL

6 Technique Analysis

Building the structures guarantees, that any input value

n

n NXX ∈},..,{ 1 has a direct relation with

m

m Nkk ∈},..,{ 1 .

This implies that the structure can be built after certain

evolution rules are given. In this way, any algorithm that

intends to calculate an extinguished multiset from an

initial multiset of objects can generate the linear structure

ΦL during the compilation time.

 During the compiling stage of an algorithm, two new

structures are created. When the multiplicities of the

initial multisets are provided as input values

n

n NXX ∈},..,{ 1 of a given algorithm, this algorithm will

search the entry
],..,[1 nXX
 of the physical structure. Thus

the algorithm returns
],..,[1 nXXLΦ . After the value is

returned, a new value is generated by searching the entry

],..,[1 nvirt XXLΦ and then selecting randomly one of the

possible combinations of

m

m Nkk ∈},..,{ 1 stored

in that entry. Once it is selected, this value would

overwrite the value],..,[1 nXXL Φ . The way that the

structure has been created, assures that for each input

values, different outputs might be generated. Thus, the

use of the linear structure preserves the non-determinism,

which a characteristic of the Paun biological model.

In both structures, the number of cells that ΦL requires is:

∏
=

n

i

iXbenchmark
1

)(

 where n is the number of

symbols of the current multiset. The combination of the

number of symbols and the selected benchmarks of each

symbol will determine the number of cells that the linear

structure must have. Thus, the combination of these two

factors has a major influence in the amount of memory

used by ΦL .

Within the last years, algorithms have been developed to

calculate extinguished multisets. They have achieved a

computational complexity equal to
)(mΘ

 where m

is the number of evolution rules involved.

When the number of evolution rules is high, the

execution time can take too long. On the contrary, the

best scenario for this technique is when the combination

between number of symbols and their benchmarks is low,

regardless the number of evolution rules and the

maximum applicability benchmark of any evolution rule.

For instance, let us consider a hypothetical scenario

where the multiset of symbols=
{ }21,XXS=

 , and the

number of evolution rules is
1210 . Let us also consider

that the maximum value that an evolution rule can be

applied is
2410 .

Under these conditions, an algorithm as the fast linear

algorithm [16] is inefficient as its complexity is O (m)

where m is the number of evolution rules. On the

contrary, an algorithm that uses this technique can find

extinguished multisets with a constant complexity order.

When using this technique, it is necessary to reserve 124

bits for each structure's cell as per:

1244362412
22101010

36

=≤=⋅ .

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Alberto Arteta, Luis F. Mingo, Juan Castellanos

E-ISSN: 2224-3402 33 Volume 15, 2018

 This means 15 bytes per cell .Let us set a benchmark of

30000 for each symbol iX
of the multiset. Considering

that there are two symbols within our current Multiset:

{ }21, XXS = , then:
81093000030000 ⋅=⋅ number of cells

of ΦL . Thus, the amount of memory needed to create ΦL

is

Gbbytescellbytescells 5.1310135)/(15109
88 =⋅=⋅⋅

 Thus, when having 13.5 Gb any algorithm

using this technique can find extinguished

multisets with complexity order O(1) as long as

Input values for
21 XandX multiplicities

are <30000. This will occur regardless the

number of evolution rules.

The amount of memory needed to create the

virtual structure increases as every cell can

store more than one set of numbers, i.e.

,...}..,,..,,{ ''

1

''

2

'

121 kkkkkkk mm , Let us

assume that the maximum number of

combinations mkkk ..,, 21 stored in each entry is
4810 . This means

344486241250 2210101010
86

=≤=⋅⋅
. This means 43 bytes per cell.

virtLΦ =

Gbbytescellbytescells 7.3810387)/(43109 88 =⋅=⋅⋅

Once this is done, both structures are built. The

physical structure relates the number of times

that each evolution rule should be applied to the

multiplicity input values of the initial multiset.

This occurs as long as these values are always

either less than or equal to their benchmark.

An algorithm, as the one based on the

maximum applicability benchmark, could create

the structures during compilation stage. If the

number of evolution rules is high, it would be

worth considering creating the structures. This

finds the corresponding values to the number of

times that each rule should be applied in order

to obtain an extinguished multiset. This happens

as long as the input values of the object’s

multiplicities are lower than the previously

fixed benchmarks.

7 Algorithm

Following is the code that returns the multisets

as outputs

()

),(),()5(

)4(

),()3(

)2(

)),((,)1(

YXLYXL

END

YXLoutput

BEGIN

TURtyMultipliciYX

virtΦΦ

Φ

←

←

The algorithm search in the physical structure the

position(X, Y) which are the input values corresponding

to the multiplicities of the initial multiset. When the value

is returned, the algorithm finishes and a new value

coming from the virtual structure overwrite the value

stored in the position (X, Y), keeping the non

deterministic nature of the system.

8 Conclusions and further work

Although it is clear that proper memory

utilization is a great help to speed up the

information processing, it is still necessary to

build the right structures to optimize the

performance; and that is not always easy. This

paper contributes with a general technique that

consists of building an isomorphism based

structure that improves the performance of

traditional algorithms when dealing with

complex problems. The isomorphism matches

the initial data sets multiplicities with the

number of times that each rule should be

applied in order to obtain solutions in optimal

time; In that way, this method clearly reduces

the execution times of the algorithms when

finding maximal or extinguished multi data sets.

The nature of the isomorphism ensures that the

main bioinspired system features are preserved

and the overall system’s functionality is not

modified, the only difference between the first

model and the second one is the performance.

Although the idea of using memory resources

to increase performance when solving

complex problems is not new, defining the

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Alberto Arteta, Luis F. Mingo, Juan Castellanos

E-ISSN: 2224-3402 34 Volume 15, 2018

right structure based on isomorphism can offer

a promising way to generalize and to create a

standard methods for optimizing the memory

resources of traditional algorithms. Improving

the design and the implementation of new

isomorphisms reveal themselves as keys factors

in the strategy to deal with complex problems

by utilizing memory engineering.

References:

[1] Nidhal kamel taha el-omari “Scanned

document image segmentation using

back-propagation artificial neural

network based technique” North Atlantic

University Union (NAUN) International

journal of computers and

communications issue 3, volume 6, 2012

[2] Enhancing Parallel Recursive Brute

Force Algorithm for Motif Finding ,

103 Marwa Radad recent advances

in computer science proceedings of

the 6th wseas world congress: applied

computing conference (acc '13) 103-11

[3] Dimitar ivanov, univis – “A 3d software

system visualization using natural

metaphors” pages: 107-119 International

Journal of computers Issn:1998-4308

volume 8, 2014 North Atlantic

University Union (NAUN)

[4] Gh. Păun, “Computing with

Membranes”, Journal of Computer and

System Sciences, 61(2000), and Turku

Center of Computer Science-TUCS

Report nº 208, 1998.

[5] Gh. Păun, “Membrane computing. Basic

ideas results, applications”, Pre-

Proceedings of First International

Workshop on Theory and Application of

P Systems, Timisoara (Romania), pp. 1-

8, September , 2005.

[6] Kenneth Price, Rainer M. Storn, and

Jouni A. Lampinen. Differential

Evolution: A Practical Approach to

Global Optimization (Natural Computing

Series). Springer- Verlag New York, Inc.,

2005.ISBN 3540209506..

[7] K.V. Price. Differential evolution: a

fast and simple numerical optimizer. In

Fuzzy Information Processing Society,

1996. NAFIPS. 1996 Biennial Conference

of the North American, pages 524–

 527, 1996. doi:

{10.1109/NAFIPS.1996.534790}.

[8] Lingian Pan, Carlos Martin-Vide

''Solving multidimensional 0-1 knapsack

problem by P systems with input and

active membranes'', Journal of Parallel

and Distributed Computing Volume 65

, Issue 12 (December 2005)

[9] Lin, Shen, Kernigham BW An Effective

Heuristic Algorithm for the Traveling-

Salesman Problem". Operations

Research 21 (2): 498–516.

doi:10.1287/opre.21.2.498.Volume 21,

Issue 2, March- April 1973

[10] A. Arteta, L.Fernandez, J.Gil

“Algorithm for Application of Evolution

Rules based on linear diophantine

equations” Synasc 2008.Timisoara

Romania September 2008

[11] Arroyo, A. Arteta,, A. Goñi.

Calculating maximal multisets using

RAM as support, Artificial life and

Robotics 2010, Beppu Japan

[12] Alberto Arteta, Nuria Gomez Luis

Fernando Mingo. ,Solving complex

problems with a bioinspired model.

Engineering Applications of Artificial

Intelligence,Volume 24, Issue 6,

September 2011, Pages 919–927

[13] Alberto Arteta , Angel Castellanos,

Ana Martinez: Membrane computing: non

deterministic technique to

calculate extinguished multisets of

objects. International Journal “

 Information Technologie s and

Knowledge”, Vol. 4, Number 1, 2010

[14] Chiang, Jui-Hao. Optimization

Techniques for Memory Virtualization-

based Resource Management Publisher:

The Graduate School, Stony Brook

University: Stony Brook, NY. Date: 1-

Dec-12

[15] Ganon, Jalby Strategies for cache and

local memory management by global

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Alberto Arteta, Luis F. Mingo, Juan Castellanos

E-ISSN: 2224-3402 35 Volume 15, 2018

program transformation

 Journal of Parallel and Distributed

Computing, Volume 5, Issue 5, October

 1988, Pages 587–616

[16] L. Fernandez, J.Castellanos, F. Arroyo,

J. tejedor, I Garcıa “New algorithm for

application of evolution rules”,

Proceedings of the 2006 International

Conference on Bioinformatics and

 Computational Biology, BIOCOMP’06,

Las Vegas, Nevada, USA, 2006.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Alberto Arteta, Luis F. Mingo, Juan Castellanos

E-ISSN: 2224-3402 36 Volume 15, 2018

