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Abstract: - During years proper memory utilization has been the  differential factor for algorithms that try to 

solve complex problems in optimal time. Computational complexity is currently measured in time and space.  

The way that algorithms are built can make a huge difference when obtaining desired solutions to problems.  

Memory engineering based algorithms reveal themselves as essential when fast results are needed and offer 

unlimited options to improve whatever bioinspired algorithm that based its performance in terms of time and 

space. This work focuses on creating a mathematical generic strategy by building structures through the use of 

an isomorphism that optimize the memory utilization and the resolution time of bioinspired models when 
dealing with high computational problems. Therefore offers a great help when solving complex and known 

issues. 
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1 Introduction 

The concept of transition p-system was first 

introduced in a 1998 by Gheorghe Paun, whose last 

name is the origin of the letter P in 'P Systems'. 

Variations on the P system model created what we 

call 'membrane computing.' 

This model was inspired by biology, however P 

systems were used as a computational model, 

instead of a biological model. Nowadays there are 
some attempts of creating new biological models 

through the use of p-systems.  In [1] there are some 

keywords related to membrane computing such as 

parallelism,  distributed applications, algorithms. 

Paun avoids stating that there are implementations 

of p-systems. This happens because the model he 

proposes has an inherent parallelism and non 

determinism. Those characteristics cannot be 

implemented in a conventional computer. [1].  

Regarding simulators, [2] remarks: simulations on 
conventional computers can be useful too: In fact all 

these programs were used on biological applications 

and they can also play an important role for didactic 

purposes and to establish new researching areas. 

The living cells we see that they process food and 

nutrients in a very characteristic way.  Living cells 

get atoms or molecules and then react by producing 

other atoms and molecules.  
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This process has been studied and it has also been 

tried to implement into computers. Living cells act 

and process nutrients according to certain rules that 
take place in a parallel and in a non deterministic 

manner. This model has been copied by many 

researchers to establish new machines that process 

information in the same way.  In 1998 George Paun 

studied the described biological model and then was 

able to create what we call nowadays ‘Membrane 
computing’.  This was created mainly inspired on 

the processes that take place inside of the living 

cells. After analyzing such processes, it is noticeable 
that they have properties that can be used into a 

computational model. This model was a revolution 

because it opened new researching areas for solving 
NP-complete problems. 

Foundations and organizations were aware of this 

new revolutionary way of computing and 

encouraged the research on that direction. Examples 

of these are EMCC (European Molecular 

Computing Consortium) and The Consortium for 

Biomolecular Computing. 

In 2004 the official p-system web 

http://psystems.disco.unimib.it was created; since 
then, it has been supported by the EMCC  

 

In February 2003 membrane computing was defined 

as “the most revolutionary way of computing within 

ICT”. This was said by the Institute of Scientific 

Information. 

The transition P-systems have been suffered a 

transformation themselves. This transformation 

comes from the desire of collecting more biological 

properties. Moreover the use of automats has been 
added to improve the performance of p-systems. 

One of the main goals for the p-systems to achieve 

is the resolution of Np completes problems in 
polynomial time.  

Natural computing group in Madrid is currently 

working on implementing p-systems in specialized 

hardware. The parallelism degree achieved is high 

and the temporary results obtained are promising. 

Also, the idea of reducing to practice the p-systems 

is more realistic. 

Algorithms for applying evolution rules are getting 

improved too. A new algorithm that obtains optimal 
results when simulating the rules application phase, 

is about to be published. This algorithm use 
combinatorial laws and statistics.   

Np complete problems have been solved in 

polynomial time and sometimes even in linear. We 
are working closer with biological areas and now 

there is a membrane computing application in 

biology. It is believed that membrane computing can 

be a reliable framework to model living cells 

processing.  

Moreover, this group has avoided approaching p-
systems as an isolated technology.  has worked on 

scenarios in where the p-systems can work together 

with multiagent systems.  There is another paper to 
be published in where p-systems works with 

autonomous robots to find optimal solutions to 

known problems 
 

2 Definitions 

Patterns
( )ΝΡ⊆→⊗ AANN   

},|{],[ NjijkiNkji ∈≤≤∈=  

Set of patterns 

( )ΝΡ⊆S  is a Set of patterns  is defined 

as the set:  
[ ]{ }Ν∈≤≤Ν∈∃ jimjnimn ,,b,a,,b,a jiji  

Set of set of patterns  
{ }ninpatternsofsetaisSiSSS ii ≤Ν∈∃Ν∈= |

.    

Observation  

Given a region R and alphabet of objects U, and R 

(U, T) set of evolution rules over U and targets in T 
re`presented as follows: 
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There is always a  set of set of patterns T)R(U,SS
 

associated to it. This set of set of patterns contains 

all the possible extinguished multisets and it is 

obtained by expanding the formula included in the 
definition of extinguished multiset: 
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LinLinear Multisets isomorphism 1Φ  

Building 1Φ , as a part of the physical evolution rule 

isomorphism is created as a function which has an 
m-dimensional set of natural numbers as input and 

an n-dimensional set of natural numbers as output, 

where m is the number of evolution rules and n is 

the number of symbols included in a given multiset 

of objects. 

 

Definition: Linear Multisets function 1ϕ  

 Let U= },..1|{ niai = be a set of objects. Let T beset 

of targets. Let  naaa ..21=ω  be a multiset of objects 

and let ix  be the multiplicity of ia . Let R (U, T) be 

a multiset of evolution rules with objects in U and 

targets in T. Let m be the number of evolution rules 

within R (U, T).   Let ik  be the number of times that 

the rule ),( TURri∈  is applied. Then 1ϕ  is defined as: 
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Once the function 1ϕ  is created, the isomorphism 1Φ   

is defined as follows: 

Definition:  Linear Multisets isomorphism 1Φ  

Let 1ϕ   be the multiset linear function related to a 

given evolution rules set 
nn Ν→ΝΦ :1  
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 Definition  

Physical evolution rules linear Isomorphism is then 
defined as follows:  

),(2121,21

21

),..,,(),..,,()...,,(

)(:

21

TURnnm

nm

SSxxxxxxkkk −→→

ΝΡ→ΝΦΦ=Φ
ΦΦ

�

 

 Based on the previous definitions, the following 

one is established and created to take full advantage 
of the virtual memory.  

Definiion: Virtual linear Multisets function 
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Given an input 
n

nxxxx Ν∈= ),..,,( 21  , it returns 

the set of numbers 

xkNkkkk m

m =∈= )(/),..,,( 121 ϕ
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Definition: Virtual linear Pattern function 
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Given a set of set of patterns as the input it returns a 

set of numbers
n

nxxxx Ν∈= ),..,,( 21 . The 

elements of this resulting set are all the 

combinations of all the possible  

n

n

j xxxx Ν∈= ),..,,( 21  where 

)()( jSPipatternx j

i ∈∈  

of a set of patterns contained in the matrix of set of 

patterns.Now it is possible to build the physical and 

virtual linear structures from the multisets 

isomorphism. 

 

3. Isomorphism based structure 

 

The structure is created as follows. 
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When L (i, j) already has a value, then, a random 

election must be done. This election can be either 

overwriting the old value with the new one, or to 

leave the old value (No action).This linear structure 

has to comply with having all possible numbers, up 
to a combination of benchmarks, reasonably high. 

Each symbol },..1|{ niX i =   will have a 

benchmark. The combination of all the benchmarks 

will define the number of entries that the linear 

structure has. Each entry stores the values 
},..{ 1 mkk . These values indicate the number of 

times that an evolution rule should be applied to an 
initial multiset in order to obtain an extinguished 

multiset.   

The linear structure ΦL  must guarantee that it 

contains all the entries corresponding to the 

combination number of all benchmarks associated to 

the symbols },..1|{ niX i = , i.e. it can not have 

non functioning entries. That could damage 
response timing and it would increase the 

computational complexity in terms of time. It's 

necessary to prove that this structure has not null 
values. 

 Let ΦL
 be a linear structure built from the 

evolution rules isomorphism and a certain V multiset 

of objects and R (U, T) multiset of evolution 

rules.⇒  
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A resulting set of n-sums is obtained. Let iA  be = 

{min ijA
 of the sums (i)} .Moreover, let 

)( ijAP
be the Matrix of set of patterns resulting 

from R (U, T). 

],0[][/, ),(),( iTURTUR AiSpatternsofsetSniNi =∃≤∈∀

. Proof is trivial 

Thus,

NxxAkAmjNjAAA ijiijiij ∈∀=+⋅≤∈∃⇒=≠∀ ],0[/0

.  

 

Observation: 

This proves that when following this method, any 

natural number from 
m

m Nkk ∈},..,{ 1  can be 
generated. Thus, the structure does not have null 
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values from any entry. As the process is an 
isomorphism, any natural number between 0 and a 

given benchmark will be uniquely related to a 

combination of 
m

m Nkk ∈},..,{ 1  where m is 

the number of evolution rules included in R (U, T). 

Moreover the calculation of extinguished multisets 

will be immediate.  When 
m

m Nkk ∈},..,{ 1  are 

found, applying the evolution rule ir
 a number of 

ik
 times to the initial multiset, will   calculate 

them. 

Given V= { },..1|{ niX i = be a multiset of symbols 

and given R (U, T), a multiset of evolution rules. 

Given the set { Nki∈ the number of times that the 

evolution rule  ir  is applied over the initial 

multiset} the following evolution rules function is 

defined:

)(()( ),(21 ijTURvirtvirtvirt APΦΦ=Φ �
  

 
       Consistency theorem 

 

The linear structure ΦL  must guarantee that it 

contains all the entries corresponding to the 

combination number of all benchmarks associated to 

the symbols },..1|{ niX i = , i.e. it can not have non 

functioning entries. That could damage response 

timing and it would increase the computational 

complexity in terms of time. It's necessary to prove 

that this structure has not null values. 

 Let ΦL  be a linear structure built from the 

evolution rules isomorphism and a certain V multiset 
of objects and R (U, T) multiset of evolution 

rules.⇒ 
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A resulting set of n-sums is obtained. Let iA
 be = 

{min ijA
 of the sums (i)} .Moreover, let 

)( ijAP
be the Matrix of set of patterns resulting 

from R (U, T). 

],0[][/, ),(),( iTURTUR AiSpatternsofsetSniNi =∃≤∈∀

. Proof is trivial 

Thus,

NxxAkAmjNjAAA ijiijiij ∈∀=+⋅≤∈∃⇒=≠∀ ],0[/0

.  

Remark: 

This proves that when following this method, any 

natural number from 

m

m Nkk ∈},..,{ 1  can be 

generated. Thus, the structure does not have null 

values from any entry. As the process is an 
isomorphism, any natural number between 0 and a 

given benchmark will be uniquely related to a 

combination of 

m

m Nkk ∈},..,{1  where m is the number 

of evolution rules included in R (U, T). Moreover 

the calculation of extinguished multisets will be 

immediate.  When 

m

m Nkk ∈},..,{1  are found, applying 

the evolution rule ir a number of ik  times to the 

initial multiset, will   calculate them. 

corresponding number in square brackets as 

shown at the end of this sentence [1].  
 



 

4 Virtual structure 

Given V= { },..1|{ niX i = be a multiset of 

symbols and given R (U, T), a multiset of 

evolution rules. Given the set { Nki∈ the 

number of times that the evolution rule  ir  is 

applied over the initial multiset} the following 

evolution rules function is defined: 

. 
)(()( ),(21 ijTURvirtvirtvirt APΦΦ=Φ �

  

 Once the virtual function has been constructed, the new 

virtual linear structure must be built this way: 
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When virtLΦ  already has a value, then the new values 

are included and are appended to the existing ones. This 

means that in each entry of the virtual linear structure, 

there will be different values  

)],..,,[(

...)],..,,[(),..,,(

''

2

'

1

''

2

'

121

p

m

pp

mm

kkkappend

appendkkkappendkkk

 

 A concatenation of 
),..,,( 21 mkkk

 values is included in 

each cell of the virtual linear structure. This linear 

structure has to comply with having all possible numbers 

up to a combination of benchmarks reasonably high. 

Each symbol },..1|{ niX i =   has a benchmark. The 

combination of all the benchmarks defines the number of 

entries that the linear structure has. Each entry stores then 

a concatenation of values }.,..{ 1 mkk . These values 

indicate the number of times that an evolution rule should 

be applied to an initial multiset in order to obtain an 

extinguished multiset.   After proving the consistency of 

the physical structure proving the consistency of the 

virtual one is trivial. 

5 Example 

This example describes the steps to create both 

structures. In the first part isomorphism is defined, it 

will then creates the structure and place it in the 
RAM.  

 In the second part, another function is built and 
then allocated within the virtual memory. The 

example considers a situation where the number of 

symbols is less than the number of evolution rules, 
which is the most interesting case for this analysis. 
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From this, the set of patterns obtained is as follows: 
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Let ),,( 321 kkk  be selected randomly. For example: 
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  Once  1Φ  is completed, the next step is building 

the function 2Φ  
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Now there is enough information to build the 

physical linear structure ΦL
 in this example. A 

way to build the structure could be: 
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   Once this structure is created, it 

will be allocated in the RAM. At this moment it is 
possible to build the virtual linear structure. The 

process is similar to the one above. The main 

difference will be that in each cell a concatenation 
of values will be stored instead of just one value.  

The structure is built as follows: 
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6 Technique Analysis 

Building the structures guarantees, that any input value 

n

n NXX ∈},..,{ 1  has a direct relation with 

m

m Nkk ∈},..,{ 1 . 

This implies that the structure can be built after certain 

evolution rules are given. In this way, any algorithm that 

intends to calculate an extinguished multiset from an 

initial multiset of objects can generate the linear structure 

ΦL  during the compilation time. 

 During the compiling stage of an algorithm, two new 

structures are created. When the multiplicities of the 

initial multisets are provided as input values 

n

n NXX ∈},..,{ 1  of a given algorithm, this algorithm will 

search the entry 
],..,[ 1 nXX
 of the physical structure. Thus 

the algorithm returns
],..,[ 1 nXXLΦ . After the value is 

returned, a new value is generated by searching the entry 

],..,[ 1 nvirt XXLΦ  and then selecting randomly one of the 

possible combinations of 

m

m Nkk ∈},..,{ 1  stored 

in that entry. Once it is selected, this value would 

overwrite the value ],..,[ 1 nXXL Φ . The way that the 

structure has been created, assures that for each input 

values, different outputs might be generated. Thus, the 

use of the linear structure preserves the non-determinism, 

which a characteristic of the Paun biological model.  

In both structures, the number of cells that ΦL  requires is: 

∏
=

n

i

iXbenchmark
1

)(

 where n is the number of 

symbols of the current multiset. The combination of the 

number of symbols and the selected benchmarks of each 

symbol will determine the number of cells that the linear 

structure must have. Thus, the combination of these two 

factors has a major influence in the amount of memory 

used by ΦL . 

Within the last years, algorithms have been developed to 

calculate extinguished multisets. They have achieved a 

computational complexity equal to 
)( mΘ

 where m 

is the number of evolution rules involved.  

When the number of evolution rules is high, the 

execution time can take too long. On the contrary, the 

best scenario for this technique is when the combination 

between number of symbols and their benchmarks is low, 

regardless the number of evolution rules and the 

maximum applicability benchmark of any evolution rule.  

For instance, let us consider a hypothetical scenario 

where the multiset of symbols=
{ }21,XXS=

 , and the 

number of evolution rules is
1210 . Let us also consider 

that the maximum value that an evolution rule can be 

applied is 
2410 .  

Under these conditions, an algorithm as the fast linear 

algorithm [16] is inefficient as its complexity is O (m) 

where m is the number of evolution rules. On the 

contrary, an algorithm that uses this technique can find 

extinguished multisets with a constant complexity order. 

When using this technique, it is necessary to reserve 124 

bits for each structure's cell as per:  

1244362412
22101010

36

=≤=⋅ . 
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 This means 15 bytes per cell .Let us set a benchmark of 

30000 for each symbol iX
of the multiset. Considering 

that there are two symbols within our current Multiset: 

{ }21, XXS =  , then:  
81093000030000 ⋅=⋅  number of cells 

of ΦL  . Thus, the amount of memory needed to create ΦL  

is 

Gbbytescellbytescells 5.1310135)/(15109
88 =⋅=⋅⋅

 

 Thus, when having 13.5 Gb any algorithm 

using this technique can find extinguished 

multisets  with complexity order O(1) as long as 

Input values for 
21 XandX multiplicities 

are <30000. This will occur regardless the 

number of evolution rules. 

The amount of memory needed to create the 

virtual structure increases as every cell can 

store more than one set of numbers, i.e. 

,...}..,,..,,{ ''

1

''

2

'

121 kkkkkkk mm   , Let us 

assume that the maximum number of 

combinations   mkkk ..,, 21  stored in each entry is 
4810 . This means 

344486241250 2210101010
86

=≤=⋅⋅
. This means 43  bytes per cell. 

virtLΦ =

Gbbytescellbytescells 7.3810387)/(43109 88 =⋅=⋅⋅  

Once this is done, both structures are built. The 

physical structure relates the number of times 

that each evolution rule should be applied to the 

multiplicity input values of the initial multiset. 

This occurs as long as these values are always 

either less than or equal to their benchmark. 

An algorithm, as the one based on the 

maximum applicability benchmark, could create 

the structures during compilation stage. If the 

number of evolution rules is high, it would be 

worth considering creating the structures. This 

finds the corresponding values to the number of 

times that each rule should be applied in order 

to obtain an extinguished multiset. This happens 

as long as the input values of the object’s 

multiplicities are lower than the previously 

fixed benchmarks. 

 

7 Algorithm 

Following is the code that returns the multisets 

as outputs 

( )

),(),()5(

)4(

),()3(

)2(

)),((,)1(

YXLYXL

END

YXLoutput

BEGIN

TURtyMultipliciYX

virtΦΦ

Φ

←

←

 

The algorithm search in the physical structure the 

position(X, Y) which are the input values corresponding 

to the multiplicities of the initial multiset. When the value 

is returned, the algorithm finishes and a new value 

coming from the virtual structure overwrite the value 

stored in the position (X, Y), keeping the non 

deterministic nature of the system. 

 

8 Conclusions and further work 

Although it is clear that proper memory 

utilization is a great help to speed up the 

information processing, it is still necessary to 

build the right structures to optimize the 

performance; and that is not always easy. This 

paper contributes with a general technique that 

consists of building an isomorphism based 

structure that improves the performance of   

traditional algorithms when dealing with 

complex problems.  The isomorphism matches 

the initial data sets multiplicities with the 

number of times that each rule should be 

applied in order to obtain solutions in optimal 

time; In that way, this method clearly reduces 

the execution times of the algorithms when 

finding maximal or extinguished multi data sets.  

The nature of the isomorphism ensures that the 

main bioinspired system features are preserved 

and the overall system’s functionality is not 

modified, the only difference between the first 

model and the second one is the performance. 

Although  the idea of using memory resources 

to increase performance   when solving 

complex problems is not new,  defining the 
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right structure based on isomorphism can offer 

a promising way to generalize  and to create a 

standard methods for optimizing the memory 

resources of  traditional algorithms.  Improving 

the design and the implementation of new 

isomorphisms reveal themselves as keys factors 

in the strategy to deal with complex problems 

by utilizing memory engineering.  

 

References: 

 

[1] Nidhal kamel taha el-omari “Scanned 

document image segmentation using 

back-propagation artificial neural 

network based technique” North Atlantic 

University Union (NAUN) International 

journal of computers and 

communications issue 3, volume 6, 2012  

[2] Enhancing Parallel Recursive Brute 

Force     Algorithm for Motif Finding , 

103 Marwa  Radad  recent advances 

in computer science   proceedings of 

the 6th wseas world  congress: applied 

computing conference  (acc '13) 103-11 

[3] Dimitar ivanov, univis – “A 3d software 

system visualization using natural 

metaphors” pages: 107-119 International 

Journal of computers Issn:1998-4308 

volume 8, 2014 North Atlantic 

University Union (NAUN) 

[4] Gh. Păun, “Computing with 

Membranes”, Journal of  Computer and 

System Sciences, 61(2000), and Turku 

Center of Computer Science-TUCS 

Report nº 208, 1998. 

[5] Gh. Păun, “Membrane computing. Basic 

ideas results, applications”, Pre-

Proceedings of First  International  

Workshop on Theory and Application of 

P Systems, Timisoara (Romania), pp. 1-

8,  September , 2005. 

[6]   Kenneth Price, Rainer M. Storn, and 

Jouni A. Lampinen. Differential 

Evolution: A Practical  Approach  to 

Global Optimization (Natural Computing 

Series). Springer- Verlag New York, Inc., 

2005.ISBN 3540209506.. 

[7]   K.V. Price. Differential evolution: a 

fast and simple numerical optimizer. In 

Fuzzy Information Processing Society, 

1996. NAFIPS. 1996 Biennial Conference 

of the  North American, pages 524–

 527, 1996. doi: 

{10.1109/NAFIPS.1996.534790}. 

[8] Lingian Pan, Carlos Martin-Vide 

''Solving multidimensional 0-1 knapsack 

problem by P systems  with input and 

active membranes'', Journal of Parallel 

and Distributed Computing Volume  65 

,  Issue 12  (December 2005) 

[9] Lin, Shen, Kernigham BW An Effective 

Heuristic Algorithm for the Traveling-

Salesman Problem".  Operations 

Research 21 (2): 498–516. 

doi:10.1287/opre.21.2.498.Volume 21, 

Issue 2, March- April 1973 

 

[10]  A. Arteta, L.Fernandez, J.Gil 

“Algorithm for Application  of Evolution 

Rules based on linear  diophantine 

equations” Synasc 2008.Timisoara 

Romania September 2008 

[11]   Arroyo, A. Arteta,, A. Goñi. 

Calculating maximal multisets using 

RAM as support, Artificial life and 

Robotics 2010, Beppu Japan 

[12]   Alberto Arteta, Nuria Gomez  Luis 

Fernando Mingo. ,Solving complex 

problems with a bioinspired  model.  

Engineering Applications of Artificial 

Intelligence,Volume 24, Issue 6, 

September 2011,  Pages  919–927 

[13]  Alberto Arteta , Angel Castellanos,  

Ana Martinez: Membrane computing: non 

deterministic  technique  to 

calculate extinguished multisets of 

objects. International Journal “

 Information Technologie s  and 

Knowledge”, Vol. 4, Number 1, 2010  

[14]   Chiang, Jui-Hao. Optimization 

Techniques for Memory Virtualization-

based Resource  Management  Publisher: 

The Graduate School, Stony Brook 

University: Stony Brook, NY.  Date: 1-

Dec-12  

[15] Ganon, Jalby  Strategies for cache and 

local memory management by global 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Alberto Arteta, Luis F. Mingo, Juan Castellanos

E-ISSN: 2224-3402 35 Volume 15, 2018



program   transformation 

 Journal of Parallel and Distributed 

Computing, Volume 5, Issue 5, October 

 1988, Pages 587–616 

[16]  L. Fernandez, J.Castellanos, F. Arroyo, 

J. tejedor, I Garcıa “New algorithm for 

application of  evolution rules”, 

Proceedings of the 2006 International 

Conference on Bioinformatics and 

 Computational Biology, BIOCOMP’06, 

Las Vegas, Nevada, USA, 2006. 

 

 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Alberto Arteta, Luis F. Mingo, Juan Castellanos

E-ISSN: 2224-3402 36 Volume 15, 2018




